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A theoretical model of the isotropic-to-nematic or isotropic-to-cholesteric transitions is pro-
posed, which applies to biaxial micellar aggregates undergoing a change in their shape. The current
isotropic—biaxial-nematic theoretical model needs to be completed by considering an additional
noncritical order parameter that expresses the change in the form of the micelles and produces a
topological metamorphosis of the standard effective two-component order-parameter diagrams. This
transformation results in a drastic restructuring of the phase diagrams, which involves a symmet-
ric folding of the phases and singularities. A nonzero trace is assumed for the second-rank-tensor

nematic order parameter.

PACS number(s): 61.30.Gd, 64.70.—p

I. INTRODUCTION

The theoretical description of lyotropic mesophases [1],
which are formed by amphiphilic molecules dissolved in
water, must account for the change in shape of the molec-
ular aggregates with temperature and concentration [2].
The influence of the shape modification of the molecular
subunits on the equilibrium structures, and on the topol-
ogy of the corresponding phase diagrams, is complex, and
two main situations must be distinguished in this respect.
(1) The shape of the molecular aggregates changes con-
tinuously with the external variables, i.e., the evolution
in their form corresponds to a homogeneous deformation.
In this case the resulting equilibrium structures are gen-
erally related by group-subgroup relationships, and the
transition between the corresponding structures can be
of second order. (2) The molecular aggregates undergo
a discontinuous modification in their geometry, with a
drastic reorganization of the aggregates. In this situa-
tion one has the formation of new structures which may
not be group-subgroup related to the initial structures,
across first-order transitions. This is, for example, the
case of the transformations occurring between lamellar,
hexagonal, and cubic lyotropic phases [3].

The two preceding situations are usually found in the
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same lyotropic system for a different range of values
of the external parameters. An illustrative example is
given by the phase diagrams reported for lyotropic ne-
matic phases [4,5] and lyotropic cholesteric phases [6-8],
in which one can find two distinct regions: for low concen-
trations of the molecular aggregates in water, and below
the isotropic fluid phase, the form of the micellar ag-
gregates is modified progressively, forming uniaxial and
biaxial nematic phases (or their cholesteric analogs) sepa-
rated by second-order transition lines. For larger concen-
trations and lower temperatures, hexagonal and lamellar
phases are stabilized, which are separated from the ne-
matic, or cholesteric, region by first-order transition lines
(8].

Figure 1 shows a number of typical phase diagrams
which have been disclosed in lyotropic nematic and ly-
otropic cholesteric systems. Figure 1(a) represents the
specific features of a lyotropic nematic diagram, as it was
reported by Yu and Saupe [4] in the lyotropic mixture
of potassium laurate, decanol, and water (D20). Three
distinct nematic phases are stabilized, two uniaxial (de-
noted Np and N¢) and one biaxial (Ng), which merge at
a four-phase “Landau point” with the high-temperature
isotropic structure (Iso 1). Another reentrant isotropic
phase (Iso 2) takes place at lower temperature. When
potassium laurate is replaced by decyl ammonium chlo-
ride [5] the uniaxial nematic phases are exchanged with
respect to their position in Fig. 1(a) and the Iso 2
phase is replaced by a hexagonal two-dimensional struc-
ture [Fig. 1(b)]. At high concentrations, one may have
either a lamellar or a hexagonal phase depending on the
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FIG. 1. Experimental temperature-concentration phase di-
agrams shown schematically. (a) and (b) Lyotropic ne-
matic systems from Refs. [2] and [5]. (c) and (d) Lyotropic
cholesteric systems from Refs. [7] and [8]. Full and dashed
lines are first- and second-order transition lines, respectively.
Curved platelets and flattened spheres in (a) and (c) sym-
bolize the regions in which the biaxial and almost spheri-
cal micelles dominate. Pol, H, and L denote, respectively, a
polyphase region, a hexagonal structure, and a lamellar struc-
ture. In all figures z represents the amphiphilic concentration
of the mixture.

nature of the adjacent uniaxial nematic phase (Np or
N¢). In the chiral cholesteric variants [6-8] shown in
Figs. 1(c) and 1(d) and found, for example, in potassium
laurate/decanol/water ferrofluid [6], one has two three-
phase points, instead of one four-phase point on the up-
per isotropic-nematic transition line, and two additional
three-phase points appear on the transition line limiting
the low-temperature structure, which can be isotropic [6],
hexagonal [7], or lamellar [8]. Large polyphasic regions
appear above and below the uniaxial Ch-C, Ch-D and
biaxial (Ch-B) cholesteric phases [6,7].

The aim of the present work is to give a phenomenolog-
ical description of the phase diagrams of Fig. 1, stress-
ing the crucial influence of the shape modification of the
molecular aggregates on the topology of the diagrams.
The paper is organized as follows. In Sec. II, we show
that the current model used for biaxial nematic systems,
which was initially proposed for a fluid of rodlike and
platelike molecules [9-12], applies only to the close vicin-
ity of the high-temperature isotropic-nematic transitions
line, but is insufficient to account for the behavior of
the transition lines far from the preceding region, and
for the existence of the reentrant isotropic phase and
singular points observed at low temperatures. In Sec.
III we establish that a full description of the nematic
and cholesteric regions requires the introduction of an
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additional noncritical order parameter, which expresses
the continuous change in the micellar shape when the
temperature is lowered, and produces a topological meta-
morphosis [13,14] of the current two-component order-
parameter phase diagrams [10,12]. In a preliminary re-
port [15] the basic features of this specific nonlinear trans-
formation, which has the effect of restructuring the pre-
ceding diagrams inducing a symmetric folding of the ex-
isting phases and singularities, were briefly described.

The theoretical description of the remaining areas of
the experimental phase diagram, namely of the lamellar
and hexagonal structures, which imply topological tran-
sitions [16] in the form of the molecular aggregates, will
not be considered in the present paper.

II. THE Cs, MODEL
A. Macroscopic symmetry of the phases

From x-ray and neutron diffraction measurements
[17,18], the N¢ and Np uniaxial nematic phases have
been first analyzed to be, respectively, made of prolate
and oblate micellar aggregates dispersed in water, the
biaxial phase Np being produced by a simple change of
the micellar shape, assumed to transform from a flat disk
(Np) or an elongated cylinder (N¢) to a biaxial ellip-
soid (Np). Further careful measurements on lyotropic
nematic phases [19,20] and lyotropic cholesteric phases
[6] have revealed the following more subtle scheme. (1)
In the three nematic phases, it was shown that within a
large interval of temperatures and concentrations the mi-
celles mainly preserve their biazial symmetry and have,
on average, the form of curved platelets of dimensions ~
1 x2x 3 (eg., ~26 Ax 55 Ax 85 A). The differenti-
ation between the phases was actually shown to be the
macroscopic consequence of different orientational spa-
tial fluctuations of the platelets. (2) One has a contin-
uous decrease of the micellar shape anisotropy and ori-
entational order when the temperature is lowered from
approximately the middle of the nematic region to the
Iso 2 phase [20-22]. The change of the micellar aggre-
gates from curved platelets to flattened sphere shapes is
clearly apparent when approaching the Iso 2 phase.

According to the first-mentioned fact, the micelles are
orthorhombic objects with three distinct axes, but due
to their spatial and thermal fluctuations the resulting
macroscopic symmetries of the phases are determined by
the probability distribution of orientation of the axes,
which require two directions for their description corre-
sponding to headless vectors denoted 7 and m. Asso-
ciating these two directions with the Euler angles (3,y)
and «, respectively, the actual probability distribution
P(41_L), ‘r‘?z) should be represented in a space of dimension
larger than 3, in which the macroscopic symmetry of
the phases would not clearly appear. Figure 2 shows
the isotropic and nematic configurations in terms of the
probability distribution P(83, v) = [ P(%, 'r?z) da of the
longest orthorhombic azxis to be oriented in the direction
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FIG. 2. Probability distribution P(g) of the longest of the
orthorhombic axes indicated by a double arrow, to be oriented
in a given direction 7, in the (a) isotropic, (b) N, (c)Np, and
(d) Np phases. In (b) and (c) the two figures symbolize the
evolution from the isotropiclike to the cylindrical-like (b) and
discoticlike (c) configurations of P(;{) In (d) two possible
representations of P("l_{) are given which possess, respectively,
three maxima (left figure) and three minima (right figure).
They illustrate the intermediate character of the Np config-
urational symmetry with respect to the N. and Np symme-
tries. (b) and (c) can be equivalently replaced by revolution
ellipsoids (prolate and oblate), and (d) by an ellipsoid with
three different axes.

n . Thus, if the probability is constant in all direc-
tions of the probability distribution space, one obtains
the spherical distribution of Fig. 2(a) corresponding to
the isotropic phase. If P(:) is maximum along one direc-
tion or within a plane one gets, respectively, the Nc and
Np distributions which are given in Figs. 2(b) and 2(c).
When P(;Z) displays three simultaneous extrema (max-
ima or minima) in perpendicular directions as shown in
Fig. 2(d), the Np phase is stabilized.

From Fig. 2 one can see that, when assuming the
z direction for the infinite-fold axis in the N¢ phase,
one will have, for a full rotational symmetry O(3) of the
isotropic phase, the following point-group symmetries for
the nematic phases: Diz)h [where z is the direction of
the maximum of P(('r_z)) for the N¢o phase and is the di-
rection of the minimum of P(;:Z) in the Np phase] and
Dyp, (Ng). Starting from the chiral cholesteric isotropic
phase, with symmetry SO(3), one has the corresponding
lyotropic cholesteric point groups: D((,f,) (Ch-C and Ch-
D) and D, (Ch-B). Let us note that the representation
of P (g) used in Fig. 2 is well adapted to the microscopic
configuration of the micelles as one has for the N¢g and
Np phases a cylindrical and a discotic shape for P("r_{),
respectively, but it is not unique. One may also use, in-
stead of Figs. 2(b) and 2(c), prolate and oblate shapes
which correspond to the same D, symmetries for the
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phases and for the probability distribution of the micel-
lar orientations. Along the same line, one may use an
ellipsoidal representation of the biaxial probability dis-
tribution instead of Fig. 2(d).

B. Symmetry of the order parameter

The order parameters representing the orientational
ordering of an isotropic medium transform as the irre-
ducible representations (IR’s) of the group Go = O(3)
[or Go = SO(3) for a system of chiral molecules]. Fol-
lowing the current description of the nematic ordering
from the isotropic state [23,24], which assumes only one
direction which is sensed experimentally (the director),
the probability density describing the orientation of the
particles depends on the position vector 7 and on the

direction 7. It can be written under the general form
L & ©
p(7 3) =3 pem (7) Yem (7).
4m

The Yi,, are spherical harmonics of even index £, and
for a given £, the coefficients pg,, form a spherical tensor
transforming as an IR of Gg, i.e., as the order param-
eter components. Phase transition in nematic systems
are characterized by a tensor of rank 2 (¢ = 2). Actually
any traceless second-rank tensor can be used even when
assuming a biaxial nematic phase as, following the de-
scription of Freiser [9] and Alben [10-12], the average of
a molecular property of biaxial symmetry can be repre-
sented by the following second-rank molecular tensor:

hud — = — —
Qum=m1n — mm,

where the headless vectors 7 and m are taken, respec-
tively, along the longest axis of the molecules and along

g
the perpendicular to their planes. @Q,,, has five inde-
pendent components which span a five-dimensional irre-
ducible representation of O(3) [or SO(3)]. If one takes the
>

average of @,,,,, over the molecular orientations, the cor-

g
responding average tensor { Q,,,, ) reflecting the macro-
scopic symmetries of the stable states can be written as

(Qum) = RTR",

. . . . > R
where R is a unitary rotation matrix around n or m, and
T is a diagonal traceless matrix which fixes a reference
configuration. The diagonal elements of 7" are the eigen-

>
values of (Q,.,, ): =3 (m++v3 n2), =3 (m— V3 n2), m,
where 7; and 7, constitute the effective order-parameter
components. In other words, the three other compo-
nents of the five-dimensional order parameter associ-
ated with the isotropic-to-biaxial nematic transition are
“Goldstone” variables which do not influence the order-
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ing of the micelles, but only the critical behavior of the
system at the transition, as was noted in another frame-
work by Lubensky and Priest [25,26].

In the effective two-dimensional order-parameter
space, one can write in polar coordinates 7; = rcos#,
172 = rsin @, where 7 and @ have, respectively, the mean-
ing of the overall deviation from isotropy and the devia-
tion of a configuration from uniaxial symmetry. It should
be emphasized that in the lyotropic systems under con-
sideration, the preceding deviations must be understood
in terms of the probability distribution P ((1_{, 7‘?1.), namely
for the spatial fluctuations of the platelets. This can be
viewed by the fact that 7; and 7, have the symmetry of
the spontaneous strain components:

1

~ — (2¢€,
m \/6( z

— €zz — Eyy)

and (1)

1
N2 = E (€zx — €yy)

which express the orthorhombic deformation of an
isotropic state (m = m2 = 0). Thus the uniaxial
phases are obtained when two eigenvalues of the second

R d
rank tensor (Q,,,) are equal (which gives, for exam-
ple, 71 # 0,m2 = 0), the infinite-fold axis being along the
third eigenvector. The biaxial symmetry is realized when
the eigenvalues are unequal (71 # 12 # 0).

From Eq. (1) one can see that 1; and 72 span a two-
dimensional irreducible representation of a subgroup of
0O(3), as, for example, any of the cubic crystallographic
groups [27]. Besides, the set of distinct matrices of this ir-
reducible representation is isomorphous to an irreducible
subgroup of O(2), composed by 2 x 2 orthogonal matri-
ces acting on the “vector” representation (7,72), which
constitute the ¢mage-group of Go [28]. The generating
matrices of this image group are

3 (:/% ‘_‘{5) and ((1) _01).

They correspond to the orthogonal matrices of the point-
group C3,. Accordingly the phase diagrams associated
with the effective order parameter (71, 72) will be entirely
determined by the image symmetry Cj3, [28,29].

C. Phase diagrams associated with the image Cj,

The basic polynomials which remain invariant under
the transformation properties of the Cs, matrices (com-
plete rational basis of invariants [29]) are

L=n+ni=r%and I, =7} —3mni =r3cos30. (2)

Thus the order-parameter (Landau) expansion can be
written under the general form
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F1 (Il,Iz) = a1[1 —+ b1I2 + alez + 612I1 Iz
tazI? + by I2 +---. (3)

Expansion (3) was discussed by a number of authors in
connection with biaxial nematic systems [9-12,30] but
also with ferroelastic transitions in cubic crystals [29,31].
Only some of the related phase diagrams, namely those
for a; > 0, have been worked out. The procedure which
allows a minimization of F; has been detailed in Refs.
[29-31]. The results of the calculations and their relations
with the experimental phase diagrams of Fig. 1 can be
summarized as follows.

When F; is truncated at the sizth degree in r, which is
the minimal degree necessary to obtain a biaxial phase
[14], one gets a maximal number of three stable states. (i)
Two anti-isostructural states with identical point group
Doon (Do for cholesterics) are obtained for the equilib-
rium condition r # 0, cos 30 = £ 1. They coincide with
the uniaxial nematic phases Np and N¢ or with their
cholesteric analogs Ch-D and Ch-C. (ii) One intermedi-
ate state of orthorhombic symmetry D5y, (D for a biaxial
cholesteric phase) is stabilized for r # 0, cos 30 # + 1,
corresponding to the N or Ch-B phase.

Figures 3 and 4 summarize the topological properties of
the phase diagram associated with F for different signs
and values of the coefficients a;, b;, and ci3. Figures
3(a) and 3(b) show the diagrams currently assigned to a
fluid of biaxial molecular subunits [10-12,30] in the two-

FIG. 3. Phase diagrams corresponding to Fy (I1,Iz) in the
case az > 0, az > 0, and A = 4a; by —c%; > 0 [(a) and (b)], or
A < 0 [(c) and (d)]. Comments on the figures are given in the
text. In (a) and (c), full, dashed, and dotted-dashed lines rep-
resent first-order, second-order, and limit of stability lines, re-
spectively. Hatched surfaces are instability regions surround-
ing first-order transition lines. N is a four-phase (Landau)
point and T is a triple point. In (b) and (d) the phases corre-
spond to curved surfaces. The hatched surfaces represent the
discontinuity of the order parameter on a first-order transition
line.
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FIG. 4. Phase diagrams corresponding to Fy (I1, I2) in the
case az < 0, c12 = 0, and (a) 0 < bz < a3, (b) 0 < a3 < ba.
Comments on the figures are given in the text. The notations
and symbols for the phases and transition lines are the same
as in Figs. 3(a) and 3(c). N; and N are three-phase points
in (a) and tricritical points in (b). T and T are triple points.

dimensional plane (a1,b;) and in the three-dimensional
space (71,a1,b1). It indeed contains as in Figs. 1(a)
and 1(b) a four-phase Landau point, at which merge two
second-order transition lines [which become surfaces in
Fig. 3(b)] separating the three nematic phases. The
diagrams of Figs. 3(c) and 3(d) exhibit only the two
uniaxial nematic phases separated by a first-order tran-
sition line: A direct first-order transition between the
Np and N¢ phases has been actually reported [32,33] in
the system sodium dodecyl-lauril sulfate-water—decanol,
although this result remains to be confirmed by the order-
parameter measurement across the transition, and by the
temperature dependence of the observed phases.

The configurations shown in Fig. 3 are found when
az > 0. This coefficient appears to be related here to
the chirality of the systems although no direct causal con-
nection can be invoked in this respect. When a» becomes
negative, one gets the phase diagrams represented in Fig.
4, which contain some features proper to cholesteric bi-
axial systems. Thus as in Figs. 1(c) and 1(d), Fig. 4(a)
exhibits two three-phase points denoted N; and N;. In
the phase diagram of Fig. 4(b), Ny and N, are tricritical
points, and on the first-order transition line joining these
points appear two additional triple points denoted T; and
T>.

Let us note that the first-order transition lines in Fig.
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4 are surrounded by complex regions of phase coexis-
tence, which reflect the large polyphasic regions found
in lyotropic cholesteric phase diagrams [6,7]. These re-
gions terminate within the nematic region by two unusual
metastability end points.

D. Insufficiencies of the C3, model
for lyotropic systems

Despite a number of common features with the ex-
perimental diagrams of Fig. 1, the theoretical diagrams
of Figs. 3 and 4 differ from the former in the follow-
ing fundamental properties. (1) The lower reentrant
isotropic phases cannot be obtained using expansion Fj,
even when taking into account higher degree invariants.
As shown in Fig. 5(a) for an eighth degree expansion
of Fj, only reentrant uniaxial or cholesteric phases can
be stabilized in this case. (2) The asymmetrical diverg-
ing cusp formed by the two second-order transition lines
near the four-phase point [Fig. 3(a)] is an intrinsic fea-
ture of the C3, model. This is illustrated in Fig. 5(b),
which gives the general topology of the phase diagrams
associated with F3, in the plane of the invariants I; and
I,. Experimentally, one can see in Fig. 1(a) and Fig.

(a) a,

b
(b) AIZ N¢
I
L Ng ——»1
Np

FIG. 5. (a) Phase diagram corresponding to Fi (I, I2)
truncated to the eighth degree. A second nematic N3 phase
is stabilized, which is separated from N}, by an isostructural
transition line, ending at a critical point C. T is a triple point.
The notations and symbols for the phases and transition lines
are the same as in Figs. 3(a) and 3(c). (b) Phase diagram in
the space of invariants (I, I2), for the potential Fy (I, I2).
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1(b) that the two lines possess the same curvature close
to the Landau point. In Fig. 1(a) when decreasing the
temperature, the two lines diverge towards lower con-
centrations, and, after a common inversion of their con-
cavity, converge again versus large concentrations. This
typical nonmonotonous regime cannot be obtained when
assuming a linear dependence of the coefficients a; and
b, on temperature and concentration. (3) Similar dis-
crepancies are found for the cholesteric phase diagrams
as the theoretical behaviors shown in Fig. 4 do not ac-
count for the nonmonotonous variation of the uniaxial-
biaxial cholesteric transition lines, observed experimen-
tally [6-8], or for the two additional three-phase points
which appear on the first-order transition lines bounding
the Iso 2, or hexagonal low-temperature structures [6-8].

Two  experimental examples of temperature-
concentration phase diagrams reported for distinct phys-
ical systems can help to understand the shortcomings
of the C3, model for interpretating the phase diagrams
of lyotropic nematic and lyotropic cholesteric systems.
In the mixed chromite compounds Cr;_,Ni,CrO4 and
Fe;_,Ni,CrOg4 [34], which also contain in their phase di-
agram a Landau point and are described by the same
phenomenological approach as biaxial nematics, though
the physical nature of the order parameter and the sym-
metries of the phases are different [31], the configuration
of the transition lines in the vicinity of the Landau point
(see Figs. 3 and 7 in Ref. [34]) is very close to the theo-
retical behavior shown in Fig. 3(a), with, in particular, a
diverging cusp for the two second-order transition lines.
In Fet2Fe}3Cr;_,04 [35], the transition lines merge at
a three-phase point (Fig. 7 in Ref. [35]) with the same
topology as the transition lines which merge at IV; in Fig.
4(a).

Another instructive example is the temperature-
concentration isostructural transition line found at the
metal-semiconductor transition in the Sm;_,Gd.S and
Sm;_.Y,S systems [36,37] which terminates at high and
low temperatures by two critical points realizing a figure
(Fig. 2 in Ref. [36]) very similar to the one formed by the
second-order transition lines in the experimental diagram
of Figs. 1(a) and 1(b). Here, the isostructural metal and
insulator phases are the analogs of the anti-isostructural
uniaxial nematic phases, the intermediate metastability
region between the forward and reverse metal-insulator
lines coinciding in Fig. 1 with the biaxial nematic phase.
The phenomenological description of the phase diagram
in the SmS family [38] assumes that the structural ele-
ments (ions) of the metal and semiconductor states are
characterized by different dimensions and compressibili-
ties, due to the difference of electronic configurations and
corresponding Fermi surfaces.

From the preceding examples, one can infer that the
model currently used for a fluid of biaxial particles ap-
plies successfully when the geometry of the particles (the
atoms in mixed chromites) remains unchanged with de-
creasing temperature, but has to be completed when the
form of the particles (e.g., the SmS ions) is modified as
it has been observed experimentally for the micelles in
lyotropic systems [6,19,21]. In the following section, we
will show that when taking into account explicitly the
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observed changes in the form of the micellar aggregates
with decreasing temperature, one obtains a restructur-
ing of the theoretical phase diagrams of Figs. 3 and 4,
which leads to a good agreement with the experimental
diagrams of Fig. 1.

III. TOPOLOGICAL METAMORPHOSIS
IN THE PHASE DIAGRAMS
OF LYOTROPIC NEMATIC PHASES
AND LYOTROPIC CHOLESTERIC PHASES

In this section we first expose a theoretical model of
the isotropic-nematic transition, in which the modifica-
tion in the shape of the micellar aggregates is shown to
coincide with an additional scalar order parameter. Us-
ing the results of the catastrophe theory of restructuring
of phase diagrams, we then demonstrate that the phase
diagrams of lyotropic nematic and lyotropic cholesteric
systems are drastically modified by this additional inter-
nal degree of freedom.

A. Phenomenological description of lyotropic
nematic systems in which the micellar shape
changes continuously

Let us first introduce the physical parameters which
account both for the deformation of the micelles and for
their orientation in space, in biaxial nematic systems. In
real space, the orthorhombic deformation of a spherical
micellar aggregate can be described by the strain-tensor

€. If the micellar volume is assumed to be constant, € is

a traceless tensor, as €y, + €4y + €., = 0, and its five

independent components can be written in spherical co-
ordinates

V3 :

Mo = 2 (eazm +€yy)a m = _(exz +1 eyZ) y

1 .
N2 = 2 (€zx — €yy) + @ €ay, M1 = —MI, N-2 = 73.

(4)

After diagonalization of € in the proper system of mi-
cellar axes, the preceding components become

V3
s =

o = 5~ (2, +€§y)a

5 (e:cm vy

Using the same notation in real space as in the probabil-
ity distribution space described in Sec. IIB, one can pose
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ng = 74 cosb,,

1
”l‘zi= _ﬁra Sinea (Oﬁeaﬁg),

where r, and 6, are, respectively, the meaning of the
deviation of the micellar form from a sphere (r,=0) and
from a revolution ellipsoid (6, = 0).

Each couple of values of (r,,0,) corresponds to a given
micellar shape. The micelles which possess the same
shape but different orientations in space can be obtained
from a reference orientation in which the proper system
of micellar axes coincides with the axes of a fixed frame,
by application of the rotation R («, 3,~), where a, 3, and
v are the Euler angles, to the diagonalized components
(n&,m%,,m%,). Accordingly the five components (7;) are
functions of the five variables (r,,6,) and (a, 83, 7).

Let us now develop a theoretical model of the isotropic-
nematic transition, which includes a possible deformation
of the micelles. The space of the order parameter associ-
ated with the preceding transition identifies to the space

of the probability distribution p (/e\) = p (ra,0a, 2, 3,7),
where (/€\)d € is the probability for a micelle to exhibit

the deformation (r4,6,), and to be oriented in directions
defined by the angular variables (a, 3,). The number of

micelles per unit volume with a given deformation is n(i—:\)

A . . .

= ng p (€), where ng is the number of micelles per unit
volume. In order to determine the relevant transition or-
der parameter one can select among the set of physical

nth degree tensors T'" associated with g (/e\) the ones

which coincide with the observed structural symmetries.
The T™ tensors are defined as the average of the nth

products (m;)™ (i =+ 2,+ 1,0):
AT A
Tl — / o (& T )™ a2, (5)
=1

where [n] denotes the indices (ni,na,...,ns), n; =
0,1,...,00,and n = Y, n,.

Each reducible tensor T'™ decomposes into irreducible
tensors m(P*?) of rank p + 2s + 3t which transform as the
irreducible representation of rank 2p of SO(3). The 4p+1

components of 7% can be written as the averages

w &%) = (L1 (0:)]° L2 (m)]'w®) (m:)), (6)
where m = —2P,...,2P. The 4p + 1 functions w,(,’:)

(n:) are the p-degree polynomials of the order-parameter
components (7n;) which transform as the spherical har-
monics Y,2P. I (n;) = 03 + 2mn—1 + 2m2m—2 and I (n;)

=8 + 30 (mn-1 — 2man_2) + 3% (mn, + mn?,).
The components 7 &*"
called moments of the distribution g (@) [39]. In the cur-

rent description of the isotropic-nematic transition, only

the moments ﬂ,(i’o’o)

as given by Eq. (6) form the so-

corresponding to the second-rank

A g
irreducible tensor @ are considered. One can see from
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Eq. (6) that in this case the %% moments identify

to the averages of the n;. Using the system of variables
('raveavaaﬁ?')l), one has Il (771) = 7‘3, IZ (Th) = 7.2 cos 3
-
Partial integration of g (/e\) leads to the probability
distribution defined in Sec. II A, which describes the
orientational distribution of the micelles (Fig. 2):

<
p (n,m) = p(a,B,7)
= [ olrasbas 0B )ridraddn. (1)
In order to express the shape modification of the mi-

celles, one has to take into account the additional scalar
moment (1.9 which is defined as

71O = 7 — (I (my)) = (r2)
- / reS(ra;0a)dradbs. (8)

where
S (ray0a) = / 0 (FarOar o B,7) sinfdadfdy (9)

is the probability of a spherical micelle to undergo the
deformation (rq,60,). In summary, taking into account
both the scalar order parameter 7 and the second-rank

>
tensor order parameter Q provides a description of the
ordering distributions of deformed micellar aggregates.
In the framework of the preceding approach, the more
general thermodynamic potential which expresses the in-
teractions within the micellar system can be written as
the sum

F=Fy+ Z FP)
P=1

in which F(P) accounts for the interaction energy of P
micelles, and Fj is the internal energy of the micelles. Fy
is given by

Fo = n0/¢0 (€) p(€) d ¢,
where ¢ (/e\) is the free energy of an isolated micelle:

¢0(/5\) = 01011(/6\) + ao112(/€\)
oot an P () IE(E) + -+ -
It yields

Fo =mno [a10 T+ aoy 7%V 4 ... 4 g, w58 4.,

Along the same line, F(1) is defined by

A
F(l) = ng / ¢1 (61,/6\2) o] (21) o (gz)d /6\1 d /6\2,
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where the average interaction between two micelles is

>

ni(i=1-5)

I (&)™ Iz (&2)]™ 15 (é1, &)]™

$1(€1,2) = biniy (11 (&)]™ [Tz (61)]

and

FO =03 3 by [ 12 Q) (L&)

g1
I=1-5

x[I2(€2)]™ [I3(€1, )] p(é1) p(é3)d € d &

the invariant I3 (e/\l,e/\z) = 6/\1 e/\z expressing the
quadrupole interaction of two micelles. For example,
if a10000 = 1 and the other coefficients are zero, F®

= n(z) f 11(6/\1) © (6/\1) © (6/\2) d 5/; d EAz = Tlg’r- If agooo1
= 1 and the other coefficients are zero, the quadrupole
interaction gives the free-energy contribution F() =
ndfa.ap@) p@ débdéo=nd (@ + 2
+ 2n2) = nZ 7%, where the 7; are the spherical coor-
dinates of Q deduced from Eq. (4) by replacing ¢;; by
Qrs. It is obvious that when taking into account the
contribution of all the F(F) terms to F, one obtains an
expansion in powers of the moments 7(®*% . When re-
stricting to lowest degrees of the expansion and to the
lowest rank tensors p+2s+3t=1(p=1,s =t =0) and
>

p+2s+3t=2(p=0,s=1,t=0),1ie., to Q and 7, one
has

F=ua (no)T+ E ('no)’T2+ "; (no)r2+ E (no)r3 cos 360
+ b (no)r®+ v (no)7® cos® 30+ h (mo)rT + -+, (10)

where the coefficients a, (3, ’?, 8, 1, U, X, ... are polyno-
mials of the number ng. Let us emphasize that the form
of F given by Eq. (10) differs only from the Landau
expansion defined by Eq. (3), by the addition of the su-
cessive invariants 7,72,... of the scalar order parameter
T.

In the preceding considerations, it has been assumed
that the micellar volume remains constant within the
considered phases. However, a change in the volume of
the micellar aggregates may occur when their shape is
modified (and it will be shown in the next section that
this may be indeed the case in lyotropic nematic phases).
A relative change in the volume of the micelles corre-

. A
sponds to a nonzero trace for the strain-tensor e:

av
\%4

Ha = €za + €Eyy + € =

and one has to add a sizth component p, to the five n;
defined by Eq. (4). The corresponding components of
the tensors 7(®#%%) can be written

w3t = (1 (00))*Ua(00) e ()]0 D) (:))-
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The average increase in volume of the spheres being ex-
pressed by the additional moment p = w(®001) = (1),
As p, is a totally symmetric quantity under the opera-
tions of O(3), only 7o has to be modified in Eq. (4), i.e.,
Mo = % (2 €22 — €gx - €yy), although the order parameter
dimensionality corresponding to the second-rank tensor
becomes six instead of five. Let us note in this respect
that as the invariants I(n;), I2(n:), and pe (7;) can be
expressed as functions of the diagonalized strain-tensor
components €2, cgy, and €?,, they do not change under
the permutation of the three axes z,y, and 2, and thus
they are also invariant under the permutation group of
three objects, which is actually Cs,.

B. Restructuring of the phase diagrams in lyotropic
nematic and lyotropic cholesteric systems

In connection with the experimental phase diagrams
of Fig. 1, the additional scalar (noncritical) order pa-
rameter 7 introduced above represents the distribution
of the micellar shape at each temperature and concentra-
tion. It describes the continuous configurational change
of the micellar population when the temperature is low-
ered, and its tendency to a more isotropic shape which
portends the reentrant low-temperature isotropic phase.
From experiment the number n of aggregates correspond-
ing to a given deformation (r4,6,) can be estimated, for
a given concentration of micelles, from the average inter-
micellar distance in x-ray diffraction bands, the micellar
aggregation number, and the molar concentration of each
component of the lyotropic mixture [19]. The tempera-
ture at which the micelles undergo a crossover from a pre-
dominantly biaxial shape to a predominantly spheroidal
shape can be assumed to coincide with the decrease of
the birefrigence as a function of temperature observed in
the nematic region [22,40].

The influence of 7 on the phenomenological descrip-
tion of the phase diagrams of lyotropic systems can be
understood in the framework of the catastrophe theory
of restructuring of phase diagrams, developed by Arnold
[13,41], in which it coincides with an extravariable of the
nonrigid internal degrees of freedom of the system, which
preserves the existing singularities and leads to their mul-
tiplication. As it is shown in [13] in the general case, if
there exist in a system several noncritical, nonsymmetry
breaking additional degrees of freedom (variables), (1)
the macroscopic symmetry group of the system acts on
the additional variables in a trivial way; (2) the free en-
ergy, as a function of the extravariables, has no additional
singularities; i.e., it can be represented by a so-called
Morse function, which is a nondegenerate quadratic form
of the variables. Hence, the quadratic invariant should be
modified in order to take into account the action of the
macroscopic symmetry group on the whole set of vari-
ables, including the additional ones. More concretely,
following the procedure given in Refs. [14] and [41], when
the additional variable 7 is taken into account in the Cj,,
model, it has the consequence: (1) that a new linear
invariant I3 = 7 must be taken into account in the order-
parameter expansion (2) to induce a nonlinear transfor-
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mation of the quadratic invariant, of the form I} = I +72,
the cubic invariant I3 being unaffected by this transfor-
mation. Let us show that the invariant basis

I=r>4+7% I,=7%cos30, Is=7 (11)
is the one adapted to the phenomenological description
of the experimental phase diagrams of Fig. 1. We will

assume the following simple form for the thermodynamic
potential:

Fy(L 1z, Is) = a1 I, + apI}? + by Iy + byI2

+ClI3 + CzI32 (12)
noting that it is formally identical to the expansion F'
given by Eq. (10), and obtained from different premises.
In particular, one has the same linear and quadratic in-
variants of the scalar 7 in F3 as in F'. The mathematical
procedure used to construct the phase diagrams associ-
ated with F; is described in the Appendix. It leads to
the diagrams which are represented in Figs. 6, 7, and
8. The effect of the invariant I3 is shown in the two-
dimensional space (I2, I3) represented in Fig. 6(a), where
one can see that it produces a symmetric folding of the
diagram of Fig. 5(b) with the stabilization of the Iso 2

(b) I

FIG. 6. Phase diagrams corresponding to F» (I{,I2,Is3)
in two- and three-dimensional spaces of the invariants
(I3, Iz, I3). Comments on the figures are given in the text.

P. TOLEDANO et al.

FIG. 7. Phase diagrams corresponding to F» (I, Iz, I3) in
spaces of the phenomenological coefficients. In (a) the tran-
sition and limit of stability surfaces are characterized by the
numbers 1 (first-order), 2 (second-order), and 3 (limit of sta-
bility). In (b) the notations are the same as in Fig. 3(a). N
and N3 are two four-phase (Landau) points.

phase. This topological metamorphosts of the region cor-
responding to the upper part of the phase diagram can
be fully viewed in the three-dimensional invariant space
(I1,I2, I3) given in Fig. 6(b), which provides the topolo-
gies of the phases corresponding to lines (the isotropic
phases), surfaces (the uniaxial phases), and volume (the
biaxial phase). Figure 6(b) also reveals the neighbor-
hoods between the phases, i.e., the possibility of going
continuously, or through first-order transitions from one
phase to another. One can verify in Fig. 6(c) that it
is possible to go from one isotropic phase to the other
without transition, as it has been shown experimentally
[42] for very small concentrations of micellar aggregates.

Figure 7(a) represents the restructured phase diagram
of Fig. 3(a) in the three-dimensional space of the phe-
nomenological coefficients (a;,b1,¢1). It possesses a
twofold symmetry of the singularities and phases with
respect to the planes (aj,c1) and (a1,b1), as it can also
be seen in the two-dimensional space (c1,b1) represented
in Fig. 7(b). The diagram of Fig. 7(b) differs from the
experimental diagrams of Figs. 1(a) and 1(b) by the fact
that the second-order-transition lines are symmetric with
respect to the ¢; and b; axes. Thus in order to obtain
the nonsymmetric form reported experimentally, for the
surface limited by the second-order transition lines, one
has to perform a linear transformation in which the tem-
perature T and the concentration z do not depend only
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FIG. 8. Phase diagrams corresponding to F» (I3, Iz, I3) in
the temperature concentration plane. Comments on the fig-
ures are given in the text. The notations are the same as in
Fig. 3(a). In (a) N, and N, are four-phase points, whereas
in (b) N1, N2, N3, and N4 are three-phase points.

on the coefficients a;, by, and ¢y, but also on an adjusting
constant. This is related to the fact that we have chosen
a symmetric form for the dependence of I; as a function
of the extravariable 7. In the general case, this depen-
dence is a quadratic form: I} = r? + 72 + aT, where «
can be used as an adjusting constant for the curvature
of the transition line. In the Appendix we show that
one of the possible realizations of the adjusting constant
is to coincide with the trace of the strain tensor €., +
€yy + €z.. In other words, in order to obtain a theoret-
ical temperature-concentration diagram consistent with
the experimental observations, one may assume a relative
change in the volume of the micelles.

When taking into account the preceding volume mod-
ification of the micelles, one gets by a linear transforma-
tion of b; and c¢; in functions of the temperature and
concentration, the restructured phase diagrams shown
in Figs. 8(a) and 8(b). One can verify that the es-
sential features of the experimental diagrams are real-
ized in these phase diagrams. Let us note that the sec-
ond Landau point, denoted N, in Fig. 8(a), has been
closely approached experimentally in a system in which
the Iso 2 phase is replaced by a hexagonal phase [5]. The
metastable hatched regions in Fig. 8(b) correspond to the
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polyphasic regions reported in all the lyotropic cholesteric
systems [6-8].

The considered nonlinear transformation of the
quadratic invariant (I; = I; + 72) is the only one ac-
ceptable for an interpretation of the phase diagrams of
Fig. 1. For I} = I, — 72 one can see in Figs. 9(a), 9(b),
and 9(c) that the restructured diagram consists in two
nematic regions separated by one isotropic phase, a situ-
ation that has not been observed experimentally. For I]
= I, + P™ (7), where P™ (1) is a polynomial of degree
n = 3,4,..., one may have a tripling, quadrupling,. .. of
the singularities, which is not adapted to the case un-
der consideration, and is also very improbable from the
point of view of the catastrophe theory. The preceding
results correspond to a so-called nontrivial metamorpho-
sis [41]. In the case of a trivial metamorphosis, which
occurs when I} = I or I} = I; + 7, no multiplication of
the singularities takes place.

FIG. 9. Phase diagrams corresponding to F» (I3,I2,Is)
when I{ = I; — 7°. Comments on the figures are given in
the text. (a), (b), and (c) are the analog of Figs. 6(b), 6(a),
and 7(b), respectively, obtained for I{ = I, + 72%.-
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In summary, it has been shown that a phenomeno-
logical approach to the experimental phase diagrams of
lyotropic nematic and lyotropic cholesteric liquids re-
quires taking into account the modification of the mi-
cellar shape, and possibly the variation of their volume.
The ordering and deformation processes are associated
with two order parameters: a siz-dimensional order pa-
rameter corresponding to a second-rank tensor with a
nonzero trace, and a one-dimensional scalar order pa-
rameter. This latter parameter involves a restructuring
of the theoretical phase diagrams proposed for a system
of biaxial particles with unchanged shapes, a folding of
the singular points, and a reentrance of the parent phase.
It can be stressed that in the framework of the Landau
theory of structural phase transitions [43], the role of
nonsymmetry breaking order parameters is usually lim-
ited to a renormalization of the phenomenological coeffi-
cients in the (primary) order-parameter expansion, which
has no effect on the basic features of the phase diagram.
Here, the drastic topological changes induced by 7 are
related to the fact that this parameter expresses a mod-
ification of the local symmetry of the system, and an in-
crease in the effective order parameter dimensionality.
As a consequence, the number of effective phenomeno-
logical invariants forming the thermodynamic potential
increases, resulting in additional phases and singularities
corresponding to preexisting symmetries of the system. In
this respect, it should be stressed that the description of
the hexagonal or lamellar structures which replace, in a
number of substances, the Iso 2 phase requires additional
symmetry breaking order parameters [44].
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APPENDIX

Let us recall the concepts of the theory of singulari-
ties [14] which have been used in the discussion of the
potential F3, given by Eq. (12). Denoting Q a manifold
of orbits in the space of the invariants (Iy,I2,...,I)
formed from the order parameter components (ns), the
Landau potentials form a family of functions defined on

Q:

F=F (v I1,...,1L,), (A1)
where the 7; are phenomenological coefficients. The
equations of state of a system are given by

OF OIp dF
dF = — — = —dIp =0. A2
8Ip Ons 7s dlp P ( )
dI = (dI,dIs,...,dI,,) can be considered as a multidi-

mensional vector tangent to the corresponding subman-

ifold (stratum) of Q. Equation (A2) expresses the prop-
erty that the gradient % is perpendicular to the tangent
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vector. In a given stratum of  (a given phase) one has
% =bjp (I1,...,Im) Aj, where the bjp (j =1,...,k <

m) form a normalized basis of the space orthogonal to
—

d I, and the A; the corresponding coordinate values.

Separating in (A1) the terms linear in Ip, one can write

(A2) under the form % =vp + fp (I1,...,1I) or

(A3)

Yp = _fP(II’ v 7Im) + b]PA]

The stability of a given phase with respect to the ther-
modynamic fluctuations of the components (ns), is de-
fined by the positiveness of the second differential: d?F

= 5?%5}—,! dIpdli + % d?Ip, which can be written using

(A3):

d*F = dfpdIp + Ajbjpd*Ip > 0. (A4)

(b)

FIG. 10. Boundaries of the biaxial Np phase given by Eq.
(A5) for the following respective values of the trace t and of
the constant ap = Ii: (a) ao = 0, (b) 0 < ap < 333, (c) a0 <

0. For ao > -‘31 the biaxial phase is unstable.
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Equation (A4) allows us to distinguish the boundaries of
the phases which may be stable due to the symmetry of
the system. To find the singularities of the phase dia-
gram, one can use a potential F' which has no singularity
in functions of the Ip. Among the infinite number of such
functions, the simplest (canonical) one, which accounts
for the existing singularities, is the quadratic form of the
Ip:

F=> (yvIr + }ap I}).
P=1

Setting ap = 1 for all the P, the equation of state (A3)
takes the form

vp = —Ip + A bjp.

It is easy to show that the phase boundaries, correspond-
ing to an equality in (A4), are given either by the condi-
tions A; = 0 or by the degeneration of the matrix Mpg

= ” %:Z,f ” where Nns = M. .. ’nkvAk-{-l, ve 7Am- In the
space of the phenomenological coefficients ~y; the curve of
hypersurfaces associated with A; = 0 has the same form
as the stratum boundary on Q. The degeneration of the
Mps matrix corresponds to an envelope of the family
of vectors perpendicular to a given stratum on €. As
the (ns) are all different in the lowest symmetric phase,
the Mpg matrix is not degenerate and the corresponding
equation of state is % =0, i.e., yp = — Ip. Let us use
this latter property to show the specific form of the phase
boundaries of the biaxial nematic phase Np, as described

by the thermodynamic potential Fy (I}, Iz, Is), in which
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for simplicity we set az = by = ¢ = % Thus the equation
of state of the biaxial phase is given by a; = — I, b; =
— I, ¢; = — I5. So that, up to the sign, a phase dia-
gram in the space (I, Iz, I3) is represented equivalently
in the space of the coefficients (a1,b1,c1). Writing the
invariants under the form I} = X; X, + X2 X5 + X3
X1+ 72, I, = X; X3 X3,and I3 = 7, where X;, X5, and
X3 are the eigenvalues of the second rank strain tensor
with a nonzero trace: X; + X, + X3 = t, the boundaries
of the biaxial phase are defined by the conditions cos 6
= % 1, or equivalently by X; = X, # X3. Thus X3 =
t—2Xq, and I} = — 3X2 + 2tX; + 7%, [, = — 2X3 +
tXZ%. In order to visualize a two-dimensional section of
the three-dimensional phase diagrams (I1, I3, I3), let us
assume I] = ap, where ag is a constant. The correspond-
ing boundaries of the biaxial phase in the space (I2,I3)
or (by,cq) are given by

I, = —2X} + CX? = —b,,

Is = + (—ap — 3X2 +2CX1)% = —c;. (A5)

The different forms of the boundaries of the biaxial phase
corresponding to different values of ag and ¢t are shown in
Figs. 10(a), 10(b), and 10(c). One can see from these fig-
ures, and from Eq. (A5), that the specific form reported
experimentally for the biaxial phase boundaries, can be
obtained for nonzero values of the trace t, i.e., when the
volume of the micelles does mot remain constant across
the phase diagram.
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